

Hybrid Poplar

REFERENCE MATERIAL

Pedigree

Institution: Greenwood Resources

Location: Morrow County, OR

Harvested: 2013 Received at INL: 2013 Hybrid Clone: P. deltoides x P. nigra, clone OP-367 (433)

Sample Preparation: Clean chips dried in a bale dryer at 135°F for 8 hours. Chips were ground to pass a 2-inch sieve using a Vermeer BG480 grinder then through a ¼" sieve using a Bliss Hammermill

Composition

Table 1. Chemical composition^a of Reference Hybrid Poplar (mean of analyses completed 2/2015 & 4/2015)

%Structural Ash	%Extractable Inorganics	%Water Extracted Glucan ^b	%Water Extracted Xylan ^b	%Water Extractives Others
0.24	0.50	0.45	0.05	1.94
%EtOH Extractives	%Lignin	%Glucan	%Xylan	%Galactan
2.04	25.70	43.78	13.29	1.42
%Arabinan+Mannan ^c	%Acetate	%Total		
2.76	4.24	96.40		

^aDetermined using NREL "Summative Mass Closure" LAP (NREL/TP-510-48087)

Proximate, Ultimate & Calorimetry

Table 2. Proximate, ultimate and calorific values for Reference Hybrid Poplar (reported on a dry basis; completed 3/2015)

Proximate ^a				Ultimate ^b	Calorimetry ^c		
%Volatile	%Ash	%Fixed Carbon	%Hydrogen	%Carbon	%Nitrogen	HHV	LHV
86.48	0.87	12.65	6.03	49.40	Below Detection Limit	8746	7370

^aProximate analysis was done according to ASTM D 5142-09

^bDetermined by HPLC following an acid hydrolysis of the water extractives

^c%Arabinan value includes %mannan, because arabinose and mannose co-elute on the HPLC column

^bUltimate analysis was conducted using a modified ASTM D5373-10 method (Flour and Plant Tissue Method) that uses a slightly different burn profile

^cHeating values (HHV, LHV) were determined with a calorimeter using ASTM D5865-10

Elemental Ash

Table 3. Elemental ash composition^a of Reference Hybrid Poplar (completed 4/2015)

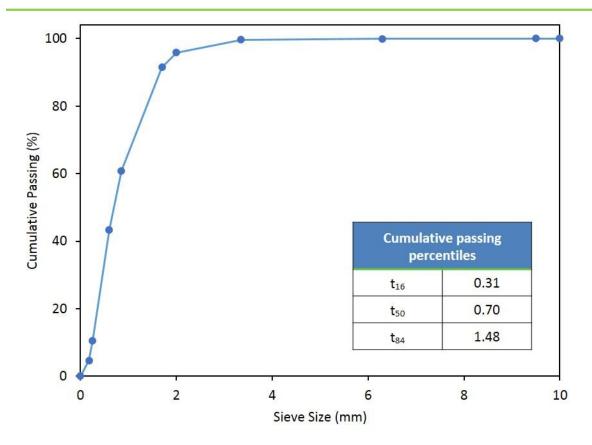
%Al as Al ₂ O ₃	%Ca as CaO	%Fe as Fe₂O₃	%K as K ₂ O		%Mn as MnO			%Si as SiO₂	%Ti as TiO₂	%S as SO₃
1.02	27.02	0.71	25.56	7.00	0.07	1.41	5.97	10.81	0.07	2.98

^aDetermined as described in ASTM standards D3174, D3682 and D6349

Lignin Chemistry

Table 4. Lignin chemistry of Reference Hybrid Poplar (completed 2/2016)

Monolignol Composition ^a			Linkage Analysis ^b				
p-Hydroxyphenyl (H) content (% of total H+G+S)	Guaiacyl (G) content (% of total H+G+S)	Syringyl (S) content (% of total H+G+S)	ß-aryl ether (ß-O-4) (fraction of total) ^c	Phenylcoumaran (ß-5/a-O-4) (fraction of total)	Resinol (ß-ß) (fraction of total)	Dibenzodioxocin (5-5/4-O-ß) (fraction of total)	
0	46	54	90	7	3	0	


^aDetermined by integration of peak volumes of ball-milled whole cell wall samples, swelled in 4:1 DMSO:Py, and analyzed by gel-state HSQC NMR (Mansfield, S. D., et al. (2012) Nature Protocols, 7(9), 1579-1589)

^aDetermined as described in ASTM standards D3174, D3682 and D6349

^bQuantitative data on the different types of chemical linkages between monolignols in a biomass sample. Determined by integrating peak volumes in solution-state HSQC NMR spectra of acetylated whole cell wall samples

^cEther bond between the ß carbon on one monolignol to the phenolic oxygen on a second monolignol. This is typically the most common linkage found in native lignin samples (Vanholme, R., et al. (2010) Plant Physiol., 153, 895-905)

Particle Characteristics

Figure 1. Cumulative passing percent of 1-inch Reference Hybrid Poplar determined according to ANSI/ASAE S319.4 using a Ro-Tap test sieve shaker (Model RX-29, W.S. Tyler) and a 15 minute total sieving time (completed 4/2015). The cumulative passing percentile sieve sizes (e.g., t_{16}) were calculated by interpolation and represent theoretical sieve sizes that would retain 16, 50 or 84% of the particles by mass.

Contact

For questions regarding biomass material or analytical data please contact Amber Hoover at amber.hoover@inl.gov or 208-526-5992.

Visit the Bioenergy Feedstock Library (https://bioenergylibrary.inl.gov) for more information on biomass feedstocks.

Revised on 1/8/2018.